Observables Generalizing Positive Operator Valued Measures

نویسندگان

  • Irina Basieva
  • Andrei Khrennikov
چکیده

We discuss a generalization of POVM which is used in quantum-like modeling of mental processing.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Heisenberg’s uncertainty principle for simultaneous measurement of POVMs

A limitation on simultaneous measurement of two arbitrary positive operator valued measures is discussed. In general, simultaneous measurement of two noncommutative observables is only approximately possible. Following Werner’s formulation, we introduce a distance between observables to quantify an accuracy of measurement. We derive an inequality that relates the achievable accuracy with noncom...

متن کامل

Optimal Covariant Measurements: the Case of a Compact Symmetry Group and Phase Observables

We study various optimality criteria for quantum observables. Observables are represented as covariant positive operator valued measures and we consider the case when the symmetry group is compact. Phase observables are examined as an example.

متن کامل

Quantum model for psychological measurements: from the projection postulate to interference of mental observables represented as positive operator valued measures

Recently foundational issues of applicability of the formalism of quantum mechanics (QM) to cognitive psychology, decision making, and psychophysics attracted a lot of interest. In particular, in [1] the possibility to use of the projection postulate and representation of “mental observables” by Hermitian operators was discussed in very detail. The main conclusion of the recent discussions on t...

متن کامل

Extremal Covariant Positive Operator Valued Measures: the Case of a Compact Symmetry Group

In the modern theory of quantum mechanics, observables are represented as normalized positive operator valued measures (POVMs). The set of all POVMs having the same outcome space has natural convex structure. A convex mixture of two POVMs corresponds to a random choice between two measurement apparatuses. An extremal POVM thus describes an observable which is unaffected by this kind of randomne...

متن کامل

Egoroff Theorem for Operator-Valued Measures in Locally Convex Cones

In this paper, we define the almost uniform convergence and the almost everywhere convergence for cone-valued functions with respect to an operator valued measure. We prove the Egoroff theorem for Pvalued functions and operator valued measure θ : R → L(P, Q), where R is a σ-ring of subsets of X≠ ∅, (P, V) is a quasi-full locally convex cone and (Q, W) is a locally ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012